Spatial repolarization heterogeneity and survival in Chagas disease

R Sassi1, MW Rivolta1, LT Mainardi2, ALP Ribeiro1, F Lombardi4

1 Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano, Italy;
2 Dipartimento di Bioingegneria, Politecnico di Milano, Italy;
3 Faculdade de Medicina e Hospital das Clínicas, Universidade Federal de Minas Gerais, Brazil;
4 Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano, Italy.

Abstract

We investigate if cardiac spatial repolarization heterogeneity is related to the risk of death in a population of chronic Chagas disease patients. Repolarization heterogeneity was assessed using the V-index, a recently introduced metric founded on a biophysical model of the ECG. This metric provides an estimate of the standard deviation of the repolarization times across the heart. We analyzed 113 patients (aged 21-67 years) enrolled between 1998 and 1999 who had a known serological status showing a positive reactions to Trypanosoma cruzi. 14 subjects died before the end of the study. The V-index was significantly lower in survivor (S) than in non-survivor (NS) subjects (S: 31.2±13.3 ms vs. NS: 41.2±18.6 ms, p=0.018, t-test). A V-index larger than 36.3 ms was related to a significantly higher risk of death in an univariate Cox proportional-hazards analysis (hazard ratio, HR = 5.34, p=0.0046).

Keywords Repolarization heterogeneity, Chagas disease, V-index

1 Introduction

American trypanosomiasis, also called Chagas disease, is a parasitic infection widely present in central and south America. Carriers may stay asymptomatic for decades. It is induced by Trypanosoma cruzi, a protozoa that elects as its preferential sites of multiplication the myocardial and nervous fibers. As a consequence, in the chronic phase of the disease, it frequently causes a progressive deterioration of the heart [1]. Chagas disease is still one of the main cause of sudden death in Latin America [2].

In particular, chronic Chagas disease (cChD) might affect the anatomy of the myocardium (myocarditis, cardiomegaly), the electrophysiology of the heart and the autonomic innervations. Hence, sinus block (SB), the atrio-ventricular block (AVB), inter-ventricular block (RBBB and LBBB) and premature ventricular contraction (PVC) are typically observed. The autonomic neuropathy that characterizes most patients with Chagas disease may also contribute to the development of heart failure or the occurrence of syncope, bradyarrhythmia or tachyarrhythmia [1–3]. Different prognostic parameters have been utilized in the last 15 years, to improve death risk stratification and enabling specific therapy [4–7]. Until now, however, risk stratification in Chagas disease patients remains an open issue.

In the present study, we made the assumption that as a result of an abnormal enlargement of the myocardium and structural changes of cardiac myocytes, cChD might also alter the spatial distribution of the myocytes’ repolarization times across the heart. In support of our hypothesis, it must be recalled that: i) spatial repolarization heterogeneity creates suitable conditions for the mechanism of reentry and favors the development of ventricular fibrillation [8], commonly observed in cChD; ii) previous studies have found an association between QT variability [9] or T wave amplitude variability [10], and sudden cardiac death; iii) and, more recently, we have reported [7] that an increase in T wave amplitude variability (TWV) was associated with an increased risk of death in cChD.

We therefore analyzed the same ECG recordings utilized in the previous study [7] and we quantified spatial repolarization heterogeneity with the V-index, a metric recently introduced [11]. Based on a biophysical model, this parameter is an estimate of the standard deviation of the repolarization times across the heart. We therefore tested whether patients mortality could be predicted by a structural remodeling of the repolarization times, as detected by the V-index, a parameter capable of reflecting spatial repolarization heterogeneity due to the dispersion of the myocytes’ repolarization times across the ventricles.

2 Methods

2.1 Dataset

The study was performed on data collected at the Chagas Disease Outpatient Reference Center of the Universidade Federal de Minas Gerais, Brazil and was designed as an observational cohort study. The data were previously described in [6, 7].

Briefly, 113 patients aged 21-67 (mean: 42.5) were enrolled between 1998 and 1999 and completed a 10-year follow-up period. The patients had a definite serological status showing a positive reactions to Trypanosoma.
cruzi. Many laboratory analysis and ambulatory tests were collected at enrolment, among which a 10 minutes Holter recording, at rest in controlled conditions. The recordings were performed with a Burdick (Altair) digital Holter recorder with 1000 Hz sampling frequency and 10- or 16-bit resolution.

Patients were followed until death or the end of the follow up in 2008. Death cases were not categorized, so no distinction was made between sudden, cardiac and non-cardiac death. Out of 113 subjects, 14 died before the end of the study.

2.2 Assessing repolarization heterogeneity

About a decade ago, van Oosterom [12], using a biophysical model showed that the shape of the T-wave on surface ECGs in one single beat, $\Psi(t)$, (a vector with a row for each of the L leads), can be related to the myocytes’ transmembrane potentials during repolarization, via the approximate relation

$$\Psi(t) \approx -A \Delta \rho_1 T_d(t) + \frac{1}{2} A \Delta \rho_2 \hat{T}_d(t).$$

(1)

The heart is subdivided in a certain number M of sources or “nodes”. Given the fact that, in first approximation, the decay of the transmembrane potential during repolarization is very similar across myocytes, a single function $T_d(t)$ takes the place of its first derivative in the previous equation. What changes across nodes is the repolarization time ρ_m. Hence $\rho = \frac{1}{M} \sum_{m=1}^{M} \rho_m$ is the average repolarization time in a beat and, most importantly, $\Delta \rho_m = \rho_m - \rho$ is the repolarization delay of the node m with respect to the entire set. In equation (1), $\Delta \rho = [\Delta \rho_1, \ldots, \Delta \rho_M]^T$ is a vector of repolarization delays and $\Delta \rho^2 = [\Delta \rho_1^2, \ldots, \Delta \rho_M^2]^T$. A is a patient-dependent $[L \times M]$ transfer matrix accounting for the contribution of each node to the L-leads electrocardiographic recording in $\Psi(t)$. The terms w_1 and w_2 are $[L \times 1]$ vector of lead factors, one for each lead.

Sassi & Mainardi recently [11] introduced a simple model for the repolarization delay $\Delta \rho_m$, for each node m over a short interval of time where the heart rate (HR) does not vary significantly:

$$\Delta \rho_m(k) = \vartheta_m + \varphi_m(k).$$

(2)

where ϑ_m models the spatial variability of the repolarization times for a given subject at a given HR, and $\varphi_m(k)$ describes differences in repolarization times which are observable among successive beats, being k the beat index. Please refer to the original paper for a complete discussion of the validity of the model. Here we briefly summarize the main assumptions: i) each source in the heart has a constant—in–time repolarization delay ϑ_m (with respect to ρ); ii) for each node, fluctuations of repolarization times across following beats are modeled as a normal random variable, i.e. $\varphi_m(k) \sim N(0, \sigma^2_m)$; iii) the random oscillations have the same intensity σ_m in each source. Under these assumptions, it is possible to prove that

$$s_{\vartheta} = \left(\frac{\sum_{m=1}^{M} \varrho_m^2}{M} \right)^{1/2} \approx \frac{\text{std}[w_2(i)]}{\text{std}[w_1(i)]} = \nu_i, \quad (3)$$

where the standard deviations (std) are computed on the lead factors of lead i across a certain number of consecutive beats (not across different leads). The term $\nu_i \approx s_{\vartheta}$, the ν–index, is an estimate of the standard deviation of the repolarization times, across the myocardium. In particular of that part, ϑ_m, which does not vary in the period of time under analysis.

2.3 Computational details

The ν–index was estimated for each subject in the dataset. First, each record was processed for QRS detection and classification using a refined version of the freely available software OSEA [13]. The ECG signals were preliminarily band-pass filtered in the range 0.5–40 Hz to remove major baseline wander and high-frequency disturbances (3rd order Butterworth filter, forward and reverse application to avoid phase distortions). To reduce the impact of misclassification of the labeling routine, an average template was built using the normal beats and then used to mark as abnormal those ones which had a correlation factor with the template smaller than 0.9.

Then the detection of a few fiducial points was performed on the template. In details, the J point was roughly selected as the first minimum after the R peak on the vector magnitude (VM) signal (the square root of the sum of the three orthogonal leads squared). As for the VM signal the end of the T wave was determined according to Surawicz’s method, i.e. the point at which the tangent of the maximum slope intersects the baseline [14]. It must be noticed that the computation of the ν–index does not require an accurate detection of such fiducial markers but they were used to bracket, roughly, the position of the T wave on the ECG. The template was also employed to reset the baseline level to zero [11], after being offset by the filtering procedure.
It has been known for long time that the heart rate modulates the duration of the QT interval. Also, its duration is different during adaptation to a different heart rate [15]. Given the link between spatial repolarization heterogeneity and QT duration, the model (2) better performs when the heart rate is stationary. The ECG recordings were collected at rest in controlled conditions, so abrupt changes in HR were unlikely. However, we selected for the subsequent analysis only those beats which: i) were “stable” under the definition of equation (1) in [15]; ii) had a preceding NN interval which was close enough to the mean of the population. Such range was selected as small as possible, but large enough to contain at least 60 beats (for a direct comparison with [7]). On average we considered only beats, with NN intervals differing up to ±15 ms from the mean.

Finally, the lead factors were computed using the algorithms described in the appendix of [11] and the index in equation (3) evaluated. As we had L = 3 estimates for each subject, we considered their mean.

The survival statistical analysis was performed using the Survival package in the R software [16].

3 Results

The computation of the V−index was performed on each recording. For three cases it led to a value larger than 100 ms, which was due to poor quality of the signals and/or small number of stable beats. They were excluded from further analysis. The rest of the population had a V−index of 39.4 ± 12.8 ms. The computation included an average of 76 ± 19 beats (non necessarily adjacent).

When we compared the values obtained from patients who died in the follow-up period in comparison to survivors, the average values showed a difference (31.2 ± 13.3 ms versus 41.2 ± 18.6 ms respectively). This difference was statistically significant (p = 0.018, t-test). A box plot of the metrics is given in Fig. 1; it should be noted that several outliers are present in the survivor group.

The V−index was dichotomized at the cut value 36.3 ms, which was the one which maximized positive and negative predictability in the ROC curve (the point at which sensitivity and specificity were equivalent and equal to 71.4%). The area under the curve was small (0.672, but this is not surprising as in the study the observational window was, by design, limited in time).

A V−index larger than 36.3 ms was related to an elevated risk of death in an univariate Cox proportional-hazards analysis (hazard ratio, HR = 5.34, p=0.0046). However, when not dichotomized the V−index did not prove to be clearly related to an elevated risk of death (p=0.14). Kaplan-Meier curves are reported in Fig. 2. The log-rank chi square test (p=0.0022) suggests a significant distinction on mortality across the two populations.

![Figure 2: Kaplan-Meier survival curves built using the V−index as a stratifier (dichotomized at the value 36.3 ms). The p values corresponding to the log-rank statistics of the Kaplan-Meier survival models was p = 0.0022.](image)

4 Conclusions

The study showed that the dispersion of the repolarization times, as measured by the V−index, is significantly correlated with the risk of death in an univariate survival analysis. In particular, a value of V larger than 36.3 ms selected a population of cChD patients with a higher risk of death (p = 0.0022). The study employed recordings were only 3 leads were available. While the lead redundancy exploited was smaller than in [11], the present work suggested that the V−index can be effectively estimated in such situations. However, the accuracy-loss should be further investigated, i.e. quantified on synthetic ECG recordings.

The work was performed after the study of Ribeiro et al. [7], which showed that repolarization variability, as measured by T wave amplitude variability (TWV), was related to the risk of death in Chagas disease. In this work instead, the spatial heterogeneity of repolarization was linked to an increase risk of death in cChD. Please note that these two methodologies are based on different measures. In fact, using the terminology introduced in section 2.2, TWV mainly reflects beat to beat variability in myocytes’ repolarization times (quantified in the model by σ_φ), whereas the V−index reflects their spatial variability within the same cardiac cycle and is considered to be constant across consecutive beats (quantified in the model by s_φ). Using the categorization given in [17], the latter is a “static” repolarization assessment while the former a “dynamic” one. Our findings suggests that both mechanisms may be relevant to unmask alteration in repolarization patterns as those present in patients with Chagas disease.

As a final remark, it must be noticed that the dispersion of the myocytes’s repolarization times measured by the V−index should not be confused with “QT dispersion”, which is a measure of the variability of QT interval duration among different leads within the same cardiac cycle. Although QT dispersion was proposed as a measure of
spatial dispersion of ventricular recovery times [18], it was limited by the inaccuracy of T wave end determination thus leading over the years to inconsistent results and major criticism [17].

The study presents several limitations and it is in form of a preliminary report. For example we did not correct the survival analysis for other clinical and laboratory parameters such as, for example, left ventricular ejection fraction or the QRS length, that can also affect patients outcome. In addition we did not compare the standard deviation of w_1 and w_2 (being both parameters largely dependent on σ_φ) with TWV or micro T wave alternans. On the other hand, it represents the first clinical application of a new noninvasive technique to identify alterations in the ventricular repolarization process in one of the most important arrhythmic mechanisms favoring sudden cardiac death.

References

Address for correspondence:

Roberto Sassi
Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano
Via Bramante 65, 26013 Crema (CR), Italy
roberto.sassi@unimi.it